Abstract
An economic assessment of an innovative solar thermal system called Application to Solar Thermal Energy to Processes (ASTEP) was conducted. It considered its three main subsystems: a novel rotary Fresnel SunDial, Thermal Energy Storage (TES) and Control System. Current Fresnel collectors are unable to provide thermal energy above 150 °C in high-latitude locations. Therefore, the key contribution of this study is the assessment of the economic performance of the ASTEP system used to provide high-temperature process heat up to 400 °C for industries located at low and high latitudes. The ASTEP system is installed at two end-users: Mandrekas (MAND), a dairy factory located in Greece at a latitude of 37.93 N and ArcelorMittal (AMTP), a manufacturer of steel tubes located in Romania at a latitude of 47.1 N. The life cycle costs (LCC), levelised cost of energy (LCOE), energy cost savings, EU carbon cost savings and benefit–cost ratio (BCR) of the ASTEP system were assessed. The results showed that AMTP’s ASTEP system had higher LCC and LCOE than MAND. This can be attributed to the use of two TES tanks and a double-axis solar tracking system for AMTP’s ASTEP system due to its high latitude location, compared to a single TES tank and single-axis solar tracking system used for MAND at low latitude. The total financial savings of the ASTEP system were EUR 249,248 for MAND and EUR 262,931 for AMTP over a period of 30 years. This study demonstrates that the ASTEP system offers financial benefits through its energy and EU carbon cost savings for industries at different latitudes while enhancing their environmental sustainability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have