Abstract

This paper presents a hybrid model for TiO2-based memristors, integrating the dopant drift mechanism with the Schottky barrier theory. We introduce the movement of oxygen vacancies as a dynamic variable to modulate changes in memristors. Furthermore, the variation of the dominate mechanism of the TiO2 memristors under different operating conditions is studied, which is related to the position of the internal oxygen vacancy. The proposed model accurately captures the rectification linearity, and effectively elucidates the dominant current mechanisms manifested in six distinct regions of the I-V curves. Our model exhibits better predication with reduced errors when applied to Pt/TiO2/Pt memristors. The proposed model can well describe the dual-mechanism memristor phenomenon, and provides a reference for the subsequent study of multi-mechanism behavior in memristors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call