Abstract

Brownian motors and self-phoretic microswimmers are two typical micromotors, for which thermal fluctuations play different roles. Brownian motors utilize thermal noise to acquire unidirectional motion, while thermal fluctuations randomize the self-propulsion of self-phoretic microswimmers. Here we perform mesoscale simulations to study a composite micromotor composed of a self-thermophoretic Janus particle under a time-modulated external ratchet potential. The composite motor exhibits a unidirectional transport, whose direction can be reversed by tuning the modulation frequency of the external potential. The maximum transport capability is close to the superposition of the drift speed of the pure Brownian motor and the self-propelling speed of the pure self-thermophoretic particle. Moreover, the hydrodynamic effect influences the orientation of the Janus particle in the ratched potential, hence also the performance of the composite motor. Our work thus provides an enlightening attempt to actively exploit inevitable thermal fluctuations in the implementation of the self-phoretic microswimmers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call