Abstract

We describe a natural UV complete theory with a composite little Higgs. Below a TeV we have the minimal Standard Model with a light Higgs, and an extra neutral scalar. At the TeV scale there are additional scalars, gauge bosons, and vector-like charge 2/3 quarks, whose couplings to the Higgs greatly reduce the UV sensitivity of the Higgs potential. Stabilization of the Higgs mass squared parameter, without finetuning, occurs due to a softly broken shift symmetry--the Higgs is a pseudo Nambu-Goldstone boson. Above the 10 TeV scale the theory has new strongly coupled interactions. A perturbatively renormalizable UV completion, with softly broken supersymmetry at 10 TeV is explicitly worked out. Our theory contains new particles which are odd under an exact "dark matter parity", (-1)^{(2S+3B+L)}. We argue that such a parity is likely to be a feature of many theories of new TeV scale physics. The lightest parity odd particle, or "LPOP", is most likely a neutral fermion, and may make a good dark matter candidate, with similar experimental signatures to the neutralino of the MSSM. We give a general effective field theory analysis of the calculation of corrections to precision electroweak observables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call