Abstract

In this paper, a piezoelectric electromagnetic composite energy harvester is studied. The device consists of a mechanical spring, upper and lower base, magnet coil, etc. The upper and lower bases are connected by struts and mechanical springs and secured by end caps. The device moves up and down under the vibration of the external environment. As the upper base moves downward, the circular excitation magnet moves downward, and the piezoelectric magnet is deformed under a non-contact magnetic force. Traditional energy harvesters have the problems of a single form of power generation and inefficient energy collection. This paper proposes a piezoelectric electromagnetic composite energy harvester to improve energy efficiency. Through theoretical analysis, the power generation trends of rectangular, circular, and electric coils are obtained. Simulation analysis yields the maximum displacement of the rectangular and circular piezoelectric sheets. The device uses piezoelectric power generation and electromagnetic power generation to achieve compound power generation, improve the output voltage and output power, and can provide power supply to more electronic components. By introducing the nonlinear magnetic action, the mechanical collision and wear of the piezoelectric elements during the work are avoided, so that the service life and service life of the equipment is extended. The experimental results show that the highest output voltage of the device is 13.28V when the circular magnets mutually repel rectangular mass magnets and the tip magnet of the piezoelectric element is 0.6mm from the sleeve. The external resistance is 1000Ω, and the maximum power output of the device is 5.5 mW.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call