Abstract

A new type of overhead conductor with a polymer composite core is evaluated in terms of the mechanical properties and operating characteristics. The conductor is composed of trapezoidal O'-tempered aluminum wires helically wound around a hybrid glass/carbon composite core produced by pultrusion. The conductor is intended for electrical power transmission, and is designated ACCC/TW, for aluminum conductor composite core/trapezoidal wire. Measurements of core properties and conductor sag at high temperatures were compared to conventional ACSR (aluminum conductor, steel-reinforced) of the same diameter. The tensile strength of the ACCC/TW was /spl sim/1.5 times greater than conventional ACSR of the same outer diameter. The CTE of the composite core was approximately 4 times lower than the steel core in ACSR. The ACCC/TW conductor exhibited a six-fold reduction in high-temperature sag compared with conventional ACSR (Drake) when operated at the same current. The ACCC/TW conductor also exhibited greater ampacity than ACSR conductor at all operating temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call