Abstract

We examined whether transgenic growth hormone mice (Tg) that exhibit accelerated cognitive aging and exceptional free radical damage also express elevated nitrative stress. We characterized age-related patterns of 3-nitrotyrosine (3-NT) in brain homogenate and mitochondria of Tg and normal (Nr) mice as modulated by a complex anti-aging dietary supplement. Levels of 3-NT rose rapidly with age in Tg brain homogenate whereas normal controls maintained constant lower levels. The age-related slope for 3-NT was 3.6-fold steeper in untreated Tg compared to treated Tg (p<0.009), although treated Tg showed elevation in youth. Opposite to Tg, treated Nr mice had reduced 3-NT in youth (p<0.02).The age-related pattern of mitochondrial 3-NT in Nr mice was parabolic (p<0.005). Remarkably, levels in treated Nr were reduced by ∼50% (p<0.0007). Untreated Tg showed strongly increasing mitochondrial 3-NT with higher mitochondrial activity (p<0.01) whereas treated Tg showed lower nitrosylation at higher levels of mitochondrial activity. Tg mice also expressed a postural abnormality that is a biomarker of neurodegeneration and/or nitrative stress. Tg represent a promising new model of nitrative stress associated with brain deterioration and results provide proof of principle that complex dietary supplements may be ameliorating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.