Abstract

BackgroundStimulator of interferons genes (STING) is crucial for innate immune response. It has been demonstrated that cGAS-STING pathway was the driver of aging-related inflammation. However, whether STING is involved in cardiac dysfunction during the physiological aging process remains unclear. MethodsGene expression profiles were obtained from the Gene Expression Omnibus database, followed by weighted gene co-expression network analysis, gene ontology analysis and protein network interaction analysis to identify key pathway and genes associated with aging. The effects of STING on cardiac function, glucose homeostasis, inflammation, and autophagy in physiological aging were investigated with STING knockout mice. ResultsBioinformatics analysis revealed STING emerged as a hub gene of interest. Subsequent experiments demonstrated the activation of STING pathway in the heart of aged mice. Knockout of STING alleviated the inflammation in aged mice. However, Knockout of STING impaired glucose tolerance, inhibited autophagy, enhanced oxidative stress and aggravated cardiac dysfunction in aged mice. ConclusionAlthough reducing inflammation, long-term STING inhibition by genetic ablation exacerbated cardiac dysfunction in aged mice. Given the multifaceted nature of aging and the diverse cellular functions of STING beyond immune regulation, the negative effects of targeting STING as a strategy to mitigate aging phenotype should be fully considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.