Abstract
High strength and large ductility, leading to a high material toughness (area under the stress-strain curve), are desirable for alloys used in cryogenic applications. Assisted by domain-knowledge-informed machine learning, here a complex concentrated Fe35Co29Ni24Al10Ta2 alloy is designed, which uses L12 coherent nanoprecipitates in a high volume fraction (≈65 ± 3 vol.%) in a face-centered-cubic (FCC) solid solution matrix that undergoes FCC-to-body-centered-cubic (BCC) phase transformation upon tensile straining. Unlike FCC-to-BCT phase transformation involving brittle carbon-enriched martensite, the BCC martensite in this alloy does not cause brittleness at 77 K. The Fe35Co29Ni24Al10Ta2 multi-principal element alloy achieves a high yield strength ≈1.4GPa, a high work hardening rate >4GPa, an ultimate tensile strength ≈2.25GPa, and a large uniform elongation ≈45%, leading to record-high material toughness compared with previous cryogenic alloys such as 316L series stainless steels and recent high-entropy alloys. The nanoprecipitates with nanoscale spacing (≈7.5nm), apart from serving as dislocation obstacles for strengthening and dislocation sources for sustainable ductility, also undergo deformation twinning. Taken together, these mechanisms are found to be highly effective in strengthening and strain hardening upon tensile straining at liquid nitrogen temperature. These findings demonstrate how to effectively integrate strengthening mechanisms to synergize superior mechanical properties in special-purpose alloys.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.