Abstract

Any complex valued S-metric space where each Cauchy sequence converges to a point in this space is said to be complete. However, there are complex valued S-metric spaces that are incomplete but can be completed. A completion of a complex valued S-metric space ( is defined as a complete complex valued S-metric space with an isometry such that is dense in In this paper, we prove the existence of a completion for a complex valued S-metric space. The completion is constructed using the quotient space of Cauchy sequence equivalence classes within a complex valued S-metric space. This construction ensures that the new space preserves the essential properties of the original S-metric space while being completeness. Furthermore, isometry and denseness are redefined regarding a complex valued S-metric space, generalizing those established in a complex valued metric space. In addition, an example is also presented to illustrate the concept, demonstrating how to find a unique completion of a complex valued S-metric space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.