Abstract

Low Voltage Distribution Grids (LVDGs) become highly unbalanced due to the advent of single-phase solar PV plants. As a result, the voltage and current levels of the neutral conductor show a significant increase. Therefore, monitoring of the entire state of the network is essential. However, the existing state estimation algorithms estimate voltage states of the phase conductors while ignoring the state of the neutral conductor. This paper presents a novel approach to estimate the complete state of the LVDGs. A novel state reduction method was introduced to model the three-phase four-wire feeder line using a 3×3 admittance matrix, which incorporates the neutral coupling effect on phase conductors. Next, the reduced admittance matrix together with the linear approximations of active and reactive power functions were combined to formulate the Low Voltage-Linear State Estimation (LV-LSE) algorithm. Finally, the performance of LV-LSE algorithm was analyzed for different measurement uncertainties, scales of line lengths of the network, and data-loss conditions. Results show that, for all the cases, LV-LSE algorithm together with the proposed reduction method can estimate voltage states with an average maximum voltage magnitude error of less than 4.32×10-3 pu and current states with an average maximum current magnitude error of less than 1.81×10-3 pu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.