Abstract

While broadening the applicability of (φ/ψ)-dependent target values for the bond angles in the peptide backbone, sequence/conformation categories with too few residues to analyze via previous methods were encountered. Here, a method of describing a conformation-dependent library (CDL) using two-dimensional Fourier coefficients is reported where the number of coefficients for individual categories is determined via complete cross-validation. Sample sizes are increased further by selective blending of categories with similar patterns of conformational dependence. An additional advantage of the Fourier-synthesis-based CDL is that it uses continuous functions and has no artifactual steps near the edges of populated regions of φ/ψ space. A set of libraries for the seven main-chain bond angles, along with the ω and ζ angles, was created based on a set of Fourier analyses of 48 368 residues selected from high-resolution models in the wwPDB. This new library encompasses both trans- and cis-peptide bonds and outperforms currently used discrete CDLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call