Abstract
We generalize the definition of partial MDS codes to locality blocks of various length and show that these codes are maximally recoverable. Then we focus on partial MDS codes with exactly one global parity. We derive a general construction for such codes by describing a suitable parity check matrix. Then we give a construction of generator matrices of such codes. Afterwards we show that all partial MDS codes with one global parity have a generator matrix (or parity check matrix) of this form. This gives a complete classification and hence also a sufficient and necessary condition on the underlying field size for the existence of such codes. This condition is related to the classical MDS conjecture. Moreover, we investigate the decoding of such codes and give some comments on partial MDS codes with more than one global parity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.