Abstract
As shown in (Szalas, 1986, 1986, 1987) there is no finitistic and complete axiomatization of First-Order Temporal Logic of linear and discrete time. In this paper we give an infinitary proof system for the logic. We prove that the proof system is sound and complete. We also show that any syntactically consistent temporal theory has a model. As a corollary we obtain that the Downward Theorem of Skolem, Lowenheim and Tarski holds in the case of considered logic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.