Abstract

A complementary pair of planar-power MOSFETs has been developed, each of which has drain breakdown voltage as high as 250 V and 12-A current capability. These devices have field plates on the ion-implanted gate offset region to realize high-breakdown voltages and large current capabilities. The field distribution behavior of a field-plated high-voltage MOSFET and a non-field-plated device are compared. In this procedure, the first-order theory of pinchoff voltage of the offset region, the most important parameter for a planar-power MOSFET, is derived for high-voltage and high-current capability design. Experimental results to support the usefulness of a field plate for improving breakdown voltage and current capabilities are obtained and discussed. Finally, future possible developments of these devices, such as high-voltage and high-current approaches, are described and a new type of device structure is proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call