Abstract

Erase-limited memory, such as flash memory and phase change memory (PCM), has limitations on the number of times that any memory cell can be erased. The Start-Gap algorithm has shown a significant ability in practice to distribute updates across the cells of an erase-limited memory, but it has heretofore not been characterized in terms of its competitive ratio against an optimal offline algorithm that is given all the update addresses in advance. In this paper, we present a competitive analysis for the Start-Gap wear-leveling algorithm, showing that under reasonable assumptions about the sequence of update operations, the Start-Gap algorithm has a competitive ratio of 1/(1−o(1)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.