Abstract
In the present study, we compared the pharmacology, particularly neurosteroid modulation of the GABA(A) receptor, between human and rat alpha(1)beta(2)gamma(2)(L) GABA(A) receptors and between human receptors containing the long (L) and short (S) forms of the gamma(2)-subunit. We observed that maximum responses to GABA were significantly higher with the human alpha(1)beta(2)gamma(2)(L) receptor compared with the rat receptor. In terms of neurosteroid modulation, increases in the EC(15) response to GABA induced by 3alpha-OH-5beta-pregnan-20-one (3alpha5betaP), 5alpha-androstane-3alpha,17beta-diol (3alpha5alphaADL) and 5alpha-pregnane-3alpha,20beta-diol (3alpha5alpha-diol) were significantly greater for the rat compared with the human receptor. Responses to 30 micromol/L GABA were inhibited by 3beta-OH-5alpha-pregnan-20-one (UC1010) and 5beta-pregnan-3beta,20(R)-diol (UC1020) to a greater degree for human and rat receptors, respectively. Responses to GABA + 3alpha5alphaTHDOC were inhibited by 5alpha-pregnan-3beta,20(S)-diol (UC1019) and pregnenolone sulphate to a greater degree for human and rat receptors, respectively. The GABA dose-response curves for human alpha(1)beta(2)gamma(2)(S) and alpha(1)beta(2)gamma(2)(L) receptors were identical. However, the maximum GABA-evoked current, the direct gating effect of pentobarbital and the allosteric potentiation of the GABA EC(15) response by 3alpha5alphaTHDOC and 3alpha5betaP were significantly higher with alpha(1)beta(2)gamma(2)(S) than alpha(1)beta(2)gamma(2)(L) receptors. Inhibition of the response to 30 micromol/L GABA by UC1010 and UC1020 was greater for a(1)beta(2)gamma(2)(L) and alpha(1)beta(2)gamma(2)(S) receptors, respectively. Inhibition of responses to 3alpha5alphaTHDOC + GABA by UC1019 and UC1010 was significantly higher for alpha(1)beta(2)gamma(2)(L) receptors. In conclusion, the site of activation by GABA and neurosteroid modulation differ between human and rat alpha(1)beta(2)gamma(2)(L) receptors, as well as between human receptors containing the L and S splice variants of the gamma(2)-subunit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Clinical and Experimental Pharmacology and Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.