Abstract

Abstract Purpose Wearables serve to quantify the on-court activity in intermittent sports such as field hockey (FH). Based on objective data, benchmarks can be determined to tailor training intensity and volume. Next to average and accumulated values, the most intense periods (MIPs) during competitive FH matches are of special interest, since these quantify the peak intensities players experience throughout the intermittent matches. The aim of this study was to retrospectively compare peak intensities between training and competition sessions in a male FH team competing in the first german division. Methods Throughout an 8-week in-season period, 372 individual activity datasets (144 datasets from competitive sessions) were recorded using the Polar Team Pro sensor (Kempele, Finland). MIPs were calculated applying a rolling window approach with predefined window length (1–5 min) and calculated for Total distance, High-Intensity-Running distance (> 16 km/h), Sprinting distance (> 20 km/h) and Acceleration load. Significant differences between training and competition MIPs were analysed through non-parametric statistical tests (P < 0.05). Results Analyses revealed higher MIPs during competition for all considered outcomes (P < 0.001). Effect size estimation revealed strongest effects for sprinting distance (d = 1.89 to d = 1.22) and lowest effect sizes for acceleration load (d = 0.92 to d = 0.49). Conclusion The present findings demonstrate that peak intensities during training do not reach those experienced during competitive sessions in a male FH team. Training routines such as manipulations of court-dimensions and team sizes might contribute to this discrepancy. Coaches should compare training and competition intensities to recalibrate training routines to optimize athletes’ preparation for competition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.