Abstract
The synthesis and characterization of the nickel(II) complexes of a series of pentadentate and hexadentate aminopyridine ligands that contain ethylenediamine and/or propylenediamine groups are described. The ligands include: 1,12-bis(2-pyridyl)-2,5,8,11-tetraazadodecane, TRIEN-pyr; 1,13-bis(2-pyridyl)-2,5,9,12-tetraazatridecane, DIEN-PN-pyr; 1,14-bis(2-pyridyl)-2,6,9,13-tetraazatetradecane, DIPN-EN-pyr; 1,15-bis(2-pyridyl)-2,6,10,14-tetraazapentadecane, TRIPN-pyr; 1,9-bis(2-pyridyl)-2,5,8-triazanonane, DIEN-pyr; and 1,11-bis(2-pyridyl)-2,6,10-triazaundecane, DIPN-pyr. The following methods were used to determine the binding geometries of the nickel(II) complexes in the solid, solution, and gas phases: magnetic susceptibility measurements, absorption spectroscopy, EPR spectroscopy, electrochemistry, and electrospray ionization mass spectrometry. All of the ligands form 6-coordinate compounds in the solid, liquid, and gas states, with the exception of the TRIEN-pyr, DIEN-PN-pyr(partially), DIPN-pyr, and DIEN-pyr ligands which form 5-coordinate species in the gas state. All of the complexes could be oxidized to Ni(III) species electrochemically, although the Ni(III) complexes of TRIPN-pyr and DIPN-pyr were much less stable than the other four ligands. EPR spectra of the frozen solutions showed the low spin d7 Ni(III) complexes of TRIEN-pyr and DIPN-EN-pyr to be similar to those that have been found for poly-aza macrocyclic compounds.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have