Abstract

Abstract One- and two-moment parameterizations are integrated over hydrometeor diameters D(0, ∞) for vapor diffusion and the continuous collection growth processes. For the conditions specified, the total number concentration of collector particles should be conserved. To address the problem, the gamma distribution function is used for the spectral density function. Predicted variables can include total mixing ratio q, total number concentration Nt, and characteristic diameter Dn (inverse of the distribution slope λ). In all of the cases, the slope intercept no is diagnosed or specified. The popular one- and two-moment methods that are explored include the one-moment method in which q is predicted, no is specified, and Nt and Dn are diagnosed; the one-moment method in which q is predicted, Dn is specified, and Nt and no are diagnosed; the two-moment method in which q and Dn are predicted and Nt and no are diagnosed; and the two-moment method in which q and Nt are predicted and no and Dn are diagnosed. It is demonstrated for the processes examined that all of the schemes 1) fail to conserve Nt for the collector particles when Nt should be conserved and 2) have other unphysical attributes, except for the two-moment method in which q and Nt are predicted. In recent years there has been a dramatic increase in the use of more-sophisticated microphysical parameterizations in cloud, mesoscale, and climate models, and it is increasingly important for a model user to be cognizant of the strengths and weaknesses of the parameterizations in complex models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.