Abstract
The current method for sampling aerosols using the 37-mm closed-face cassette (CFC) sampler is based on the orientation of the cassette at ∼45° from horizontal. There is some concern as to whether this method is appropriate and may be underestimating exposures. An alternative orientation at ∼0° (horizontal) has been discussed. This research compared the CFC's orientation at 45° from horizontal to the proposed orientation at horizontal, 0° in a controlled laboratory setting. The particles used in this study were fused alumina oxide in four sizes, approximately 9.5 μm, 12.8 μm, 18 μm, and 44.3 μm in aerodynamic diameter. For each test, one aerosol was dispersed in a wind tunnel operating at 0.2 m/s with samplers mounted in the breathing zone of a rotating mannequin. A sampling event consisted of four pairs of samplers, placed side by side (one pair at 45° and another at 0° cassette orientation), and exposed for a period of 45 minutes. A total of 12 sampling events, 3 sample events per particle size, were conducted with a total of 94 samples collected. Mass concentration measurements were compared to assess the relationship between the sampler orientations of the cassettes. In addition, the relationship between the mass collected on the cassette filter and on the interior walls of the cassette was also assessed. The results indicated that there was no significant difference between the measured concentrations based on the orientation of the CFCs. The amount of mass collected on the interior walls of the cassettes was relatively low (<5%) compared to expected (up to 100%) wall losses for both orientations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.