Abstract
Automated network traffic classification is a basic requirement for managing Quality of Service in communications networks. This research compares the performance of six widely-used supervised machine learning algorithms for classifying network traffic. The evaluations were conducted for classification of five distinct network traffic classes and two feature selection techniques. Our comparative results show that the Random Forest and Decision Tree algorithms are promising classifiers for network traffic in terms of both classification accuracy and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.