Abstract

Medical health systems have been concentrating on artificial intelligence techniques for speedy diagnosis. However, the recording of health data in a standard form still requires attention so that machine learning can be more accurate and reliable by considering multiple features. The aim of this study is to develop a general framework for recording diagnostic data in an international standard format to facilitate prediction of disease diagnosis based on symptoms using machine learning algorithms. Efforts were made to ensure error-free data entry by developing a user-friendly interface. Furthermore, multiple machine learning algorithms including Decision Tree, Random Forest, Naive Bayes and Neural Network algorithms were used to analyze patient data based on multiple features, including age, illness history and clinical observations. This data was formatted according to structured hierarchies designed by medical experts, whereas diagnosis was made as per the ICD-10 coding developed by the American Academy of Ophthalmology. Furthermore, the system is designed to evolve through self-learning by adding new classifications for both diagnosis and symptoms. The classification results from tree-based methods demonstrated that the proposed framework performs satisfactorily, given a sufficient amount of data. Owing to a structured data arrangement, the random forest and decision tree algorithms’ prediction rate is more than 90% as compared to more complex methods such as neural networks and the naïve Bayes algorithm.

Highlights

  • Artificial intelligence (AI) plays an important role in assisting medical experts with early disease diagnosis

  • Some use symbols for diagnosis, whereas others give a textual description; there is no standard method. This data should be manually converted into a standard format so that machines can use it for analysis. This limits the size of data used in any analytical study, which is the main cause of current gaps in human-knowledge-based diagnosis and machine-intelligence-based predictions

  • This study focuses on developing a general framework for the standardized recording of patient symptoms and clinical observations, assisting medical experts in keeping up with the exponential development of medical knowledge arising from clinical trials and logical advancements in the field

Read more

Summary

Introduction

Artificial intelligence (AI) plays an important role in assisting medical experts with early disease diagnosis. Correlating the actual symptoms and clinical observations with the corresponding diseases is missing in most of these systems. This is perhaps owing to the variety of observation recording methods by medical experts. Some use symbols for diagnosis, whereas others give a textual description; there is no standard method This data should be manually converted into a standard format so that machines can use it for analysis. This limits the size of data used in any analytical study, which is the main cause of current gaps in human-knowledge-based diagnosis and machine-intelligence-based predictions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call