Abstract

A large-signal computer simulation of an IMPATT diode has been used to investigate the differences between gallium arsenide and silicon IMPATT diodes. The variations of efficiency with frequency, current density, series resistance, amount of punch-through and reverse saturation currents are all investigated. With no ‘parasitic’ effects the silicon diode efficiency remains almost constant between 10 and 100 GHz, whereas the efficiency of gallium arsenide diodes is higher than that of silicon diodes at 10 GHz but decreases to the silicon diode efficiency at 100 GHz. A lower residual avalanche particle current in gallium arsenide diodes results in a higher susceptibility to reverse saturation currents. In silicon diodes the higher material resistivity affects the efficiency more than in gallium arsenide diodes, the removal of series resistance by having a punched-through diode does not necessarily increase the efficiency. The difference between experimental results quoted in the literature and the theoretical calculations are considered in terms of these effects. By considering the differences in ionization coefficients and velocities between the materials the lower efficiency of silicon diodes compared to gallium arsenide diodes is explained, also the lower breakdown voltage of gallium arsenide diodes compared to silicon diodes of the same frequency, and the ‘forward-bias’ effect found at high frequencies in gallium arsenide diodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call