Abstract

Spatiotemporally structured noise, such as physiological noise, is a potential source of artifacts in functional magnetic resonance imaging (fMRI) and is the main limiting factor for the detection of small blood oxygen level-dependent (BOLD) signal variations. fMRI was employed to detect low-frequency BOLD signal fluctuations, which are thought to be related to spontaneous neuronal activity in the resting human brain. The sensitivity to noise, that is, signal variations of non-BOLD origin, was investigated for two- (2D) and three-dimensional (3D) imaging techniques. Incomplete relaxation between subsequent scans increases the level of temporally and spatially correlated signal variations originating from physiological and/or systemic noise. Although inflow effects are suspected to be reduced in 3D echo-planar imaging (EPI) compared with multi-slice 2D EPI, the noise level was higher in the 3D technique. The noise level in 3D fMRI experiments was significantly increased by instabilities of the transverse steady-state magnetization as the repetition time was of the order of T(2). By implementing radiofrequency spoiling, temporal signal fluctuations and erroneous inter-regional correlation in connectivity maps were diminished to a level present in data sets acquired with 2D EPI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.