Abstract
In this article, we investigate different methodologies of Arabic segmentation for statistical machine translation by comparing a rule-based segmenter to different statistically-based segmenters. We also present a method for segmentation that serves the needs of a real-time translation system without impairing the translation accuracy. Second, we report on extended lexicon models based on triplets that incorporate sentence-level context during the decoding process. Results are presented on different translation tasks that show improvements in both BLEU and TER scores.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.