Abstract

AbstractWe compare a satellite-derived sea-ice motion dataset obtained from the US National Snow and Ice Data Center with daily ice drift by drifting buoys between 1989 and 2005. the satellite data were derived from daily composites of passive-microwave satellite measurements by means of a cross-correlation method and were supplemented with data from visible and thermal channels of the Advanced Very High Resolution Radiometer. Seasonal and interannual variations of the agreement between the two datasets are discussed. In addition, regional differences in the agreement and correlation coefficients of buoy- and satellite-derived drift components are analyzed. Results show that the overall drift regime can be well described by satellite-derived drift data but 71% of the retrieved drift velocities are lower than those observed by buoys. Nevertheless, correlation coefficients, r, between the two datasets are 0.587 for the zonal and 0.613 for the meridional drift component. the correlation coefficients between monthly averages of buoy- and satellite-derived zonal and meridional drift components are on average 25.7% and 16.4% lower in summer (October–February) than in winter (March–September), with the exception of January. In January, correlation coefficients are about 62.6% (zonal) and 66.5% (meridional) lower than in winter. Furthermore, deviations between zonal buoy- and satellite-derived drift are 80% larger in the second half than in the first half of the year. the observed yearly and regional averaged agreement between the two datasets depends strongly on the season when buoy data were collected and on the number of coincident buoy and satellite data, which was often very low.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.