Abstract

Above-ground biomass (AGB) provides a vital link between solar energy consumption and yield, so its correct estimation is crucial to accurately monitor crop growth and predict yield. In this work, we estimate AGB by using 54 vegetation indexes (e.g., Normalized Difference Vegetation Index, Soil-Adjusted Vegetation Index) and eight statistical regression techniques: artificial neural network (ANN), multivariable linear regression (MLR), decision-tree regression (DT), boosted binary regression tree (BBRT), partial least squares regression (PLSR), random forest regression (RF), support vector machine regression (SVM), and principal component regression (PCR), which are used to analyze hyperspectral data acquired by using a field spectrophotometer. The vegetation indexes (VIs) determined from the spectra were first used to train regression techniques for modeling and validation to select the best VI input, and then summed with white Gaussian noise to study how remote sensing errors affect the regression techniques. Next, the VIs were divided into groups of different sizes by using various sampling methods for modeling and validation to test the stability of the techniques. Finally, the AGB was estimated by using a leave-one-out cross validation with these powerful techniques. The results of the study demonstrate that, of the eight techniques investigated, PLSR and MLR perform best in terms of stability and are most suitable when high-accuracy and stable estimates are required from relatively few samples. In addition, RF is extremely robust against noise and is best suited to deal with repeated observations involving remote-sensing data (i.e., data affected by atmosphere, clouds, observation times, and/or sensor noise). Finally, the leave-one-out cross-validation method indicates that PLSR provides the highest accuracy (R2 = 0.89, RMSE = 1.20 t/ha, MAE = 0.90 t/ha, NRMSE = 0.07, CV (RMSE) = 0.18); thus, PLSR is best suited for works requiring high-accuracy estimation models. The results indicate that all these techniques provide impressive accuracy. The comparison and analysis provided herein thus reveals the advantages and disadvantages of the ANN, MLR, DT, BBRT, PLSR, RF, SVM, and PCR techniques and can help researchers to build efficient AGB-estimation models.

Highlights

  • Accurate estimates of crop biophysical variables are crucial for monitoring vegetation growth and for analyzing important physiological parameters during the crop growth cycle [1,2]

  • The results show that all the measured vegetation indexes (VIs) are correlated with biomass to varying degrees

  • Yuan et al [81] indicated that the accuracy of the simple random sampling method is lower than stratified sampling, and our results are in agreement with that study; our results indicate that all growth-period sampling (GPS) models are more stable than global random sampling (GRS) with 2/3 sampling

Read more

Summary

Introduction

Accurate estimates of crop biophysical variables are crucial for monitoring vegetation growth and for analyzing important physiological parameters during the crop growth cycle [1,2]. One such variable, above-ground biomass (AGB), plays an important role in plant functioning because it reflects the status of crop growth and is related to solar-energy consumption, yield, and grain quality [3,4]. AGB is considered as one of the most important crop biophysical parameters, and its accurate estimation can help improve crop monitoring and yield prediction [5]. Previous studies have shown that near-infrared- and red-band vegetation indexes (VIs) are effective for estimating AGB [8,9,11]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.