Abstract

Compressive post-buckling under thermal environments and thermal post-buckling due to uniform temperature field or heat conduction are presented for a shear deformable functionally graded cylindrical shell with piezoelectric fiber reinforced composite (PFRC) actuators. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and PFRC layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation shell theory that includes thermopiezoelectric effects. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine buckling loads (temperature) and post-buckling equilibrium paths. The numerical illustrations concern the compressive and thermal post-buckling behavior of perfect and imperfect FGM cylindrical shells with fully covered PFRC actuators under different sets of thermal and electric loading conditions, from which results for monolithic piezoelectric actuators are obtained as comparators. The results reveal that, in the compressive buckling case, the control voltage only has a small effect on the post-buckling load-deflection curves of the shell with PFRC actuators, whereas in the thermal buckling case, the effect of control voltage is more pronounced for the shell with PFRC actuators, compared with the results of the same shell with monolithic piezoelectric actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.