Abstract

We aimed to determine whether the neural control of the biarticular gastrocnemius medialis (GM) and lateralis (GL) muscles is joint-specific, that is, whether their control differs between isolated knee flexion and ankle plantar flexion tasks. Twenty-one male participants performed isometric knee flexion and ankle plantar flexion tasks while we recorded high-density surface electromyography (HDsEMG). First, we estimated the distribution of activation both within- and between muscles using two complementary approaches: surface EMG amplitude and motor unit activity identified from HDsEMG decomposition. Second, we estimated the level of common synaptic input between GM and GL motor units using a coherence analysis. The distribution of EMG amplitude between GM and GL was not different between tasks, which was confirmed by the analysis of motor units' discharge rate. Even though there was a significant proximal shift in GM and GL EMG amplitude during knee flexion compared with ankle plantar flexion, the magnitude of this shift was small and not confirmed via the inspection of the spatial distribution of motor unit action potentials. A significant coherence between GM and GL motor units was only observed for four (knee flexion) and three (ankle plantar flexion) participants, with no difference in the level of coherence between the two tasks. We were able to track only a few motor units across tasks, which raises the question as to whether the same motor units were activated across tasks. Our results suggest that the neural control of the GM and GL muscles is similar across their two main functions.NEW & NOTEWORTHY Several studies have focused on the neural strategies used to control the gastrocnemius medialis (GM) and lateralis (GL) during plantar flexion. However, their secondary function, i.e., knee flexion, is not often explored. We observed a robustness of the GM and GL activation strategy across tasks, which was confirmed with an analysis of the motor unit discharge characteristics. The level of common synaptic input between GM and GL motor units was low, regardless of the task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.