Abstract

AbstractA gridpoint statistical interpolation (GSI)-based hybrid ensemble–variational (EnVar) scheme was extended for convective scales—including radar reflectivity assimilation—and implemented in real-time spring forecasting experiments. This study compares methods to address model error during the forecast under the context of multiscale initial condition error sampling provided by the EnVar system. A total of 10 retrospective cases were used to explore the optimal design of convection-allowing ensemble forecasts. In addition to single-model single-physics (SMSP) configurations, ensemble forecast experiments compared multimodel (MM) and multiphysics (MP) approaches. Stochastic physics was also applied to MP for further comparison. Neighborhood-based verification of precipitation and composite reflectivity showed each of these model error techniques to be superior to SMSP configurations. Comparisons of MM and MP approaches had mixed findings. The MM approach had better overall skill in heavy-precipitation forecasts; however, MP ensembles had better skill for light (2.54 mm) precipitation and reduced ensemble mean error of other diagnostic fields, particularly near the surface. The MM experiment had the largest spread in precipitation, and for most hours in other fields; however, rank histograms and spaghetti contours showed significant clustering of the ensemble distribution. MP plus stochastic physics was able to significantly increase spread with time to be competitive with MM by the end of the forecast. The results generally suggest that an MM approach is best for early forecast lead times up to 6–12 h, while a combination of MP and stochastic physics approaches is preferred for forecasts beyond 6–12 h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.