Abstract
This study examines the roles of the multi-physics approach in accounting for model errors for typhoon forecasts with the local ensemble transform Kalman filter (LETKF). Experiments with forecasts of Typhoon Conson (2010) using the weather research and forecasting (WRF) model show that use of the WRF’s multiple physical parameterization schemes to represent the model uncertainties can help the LETKF provide better forecasts of Typhoon Conson in terms of the forecast errors, the ensemble spread, the root mean square errors, the cross-correlation between mass and wind field as well as the coherent structure of the ensemble spread along the storm center. Sensitivity experiments with the WRF model show that the optimum number of the multi-physics ensemble is roughly equal to the number of combinations of different physics schemes assigned in the multi-physics ensemble. Additional idealized experiments with the Lorenz 40-variable model to isolate the dual roles of the multi-physics ensemble in correcting model errors and expanding the local ensemble space show that the multi-physics approach appears to be more essential in augmenting the local rank representation of the LETKF algorithm rather than directly accounting for model errors during the early cycles. The results in this study suggest that the multi-physics approach is a good option for short-range forecast applications with full physics models in which the spinup of the ensemble Kalman filter may take too long for the ensemble spread to capture efficiently model errors and cross-correlations among model variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.