Abstract

The evolutionary history of widespread and specialized species is likely to cause a different genetic architecture of key ecological traits in the two species groups. This may affect how these two groups respond to inbreeding. Here we investigate inbreeding effects in traits related to performance in 5 widespread and 5 tropical restricted species of Drosophila with the aim of testing whether the two species groups suffered differently from inbreeding depression. The traits investigated were egg-to-adult viability, developmental time and resistance to heat, cold and desiccation. Our results showed that levels of inbreeding depression were species and trait specific and did not differ between the species groups for stress resistance traits. However, for the life history traits developmental time and egg-to adult viability, more inbreeding depression was observed in the tropical species. The results reported suggest that for life history traits tropical species of Drosophila will suffer more from inbreeding depression than widespread species in case of increases in the rate of inbreeding e.g. due to declines in population sizes.

Highlights

  • A species’ genetic architecture, referring to the number of segregating functional variants, including dominance and epistatic interactions, underlying phenotypic traits, is formed by phylogenetic, demographic and ecological processes, and determines its biological performance, such as its basal resistance to environmental stressors and the ability to adapt evolutionary and through adaptive phenotypic plasticity to environmental changes [1]

  • Tropical species on average suffered more from inbreeding depression compared to widespread species for life history traits, whereas no differences among species groups were observed in stress resistance traits

  • Splitting data into life history and stress resistance traits, we found that tropical species suffered on average more from inbreeding depression in life history traits compared to widespread species (P,0.001; Fig. 2a) whereas no difference was observed for stress resistance traits (NS, Fig. 2b)

Read more

Summary

Introduction

A species’ genetic architecture, referring to the number of segregating functional variants, including dominance and epistatic interactions, underlying phenotypic traits, is formed by phylogenetic, demographic and ecological processes, and determines its biological performance, such as its basal resistance to environmental stressors and the ability to adapt evolutionary and through adaptive phenotypic plasticity to environmental changes [1]. Widespread species are exposed to different, more variable and diverse ecological conditions compared to specialized restricted tropical species, which will likely lead to different selection pressures and subsequent genetic divergence of the two species groups through evolutionary adaptation [3,4,5,6]. Widespread and tropical restricted species of Drosophila are for those reasons likely to have a different genetic architecture, especially in key ecological traits involved in environmental stress resistance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.