Abstract

Abstract The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call