Abstract
Breast cancer is the second leading cause of death among the women aged between 40 and 59 in the world. The diagnosis of such disease has been a challenging research problem. With the advancement of artificial intelligence in medical science, numerous AI based breast cancer diagnosis system have been proposed. Many researches combine different algorithms to develop hybrid systems to improve the diagnosis accuracy. In this study, we propose three artificial neural network based hybrid diagnosis systems respectively combining association rule, correlation and genetic algorithm. The effectiveness of these systems is examined on Wisconsin Breast Cancer Dataset. We then compare the accuracy of these three hybrid diagnosis systems. The results indicated that the neural network combining with association rule not only has excellent dimensionality reduction ability but also has the similar accurate prediction with correlation based neural network which has best accurate prediction rate among all three systems compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.