Abstract

This study focuses on the comparison of hybrid methods of estimation of biophysical variables such as leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fraction of vegetation cover (FVC), and canopy chlorophyll content (CCC) from Sentinel-2 satellite data. Different machine learning algorithms were trained with simulated spectra generated by the physically-based radiative transfer model PROSAIL and subsequently applied to Sentinel-2 reflectance spectra. The algorithms were assessed against a standard operational approach, i.e., the European Space Agency (ESA) Sentinel Application Platform (SNAP) toolbox, based on neural networks. Since kernel-based algorithms have a heavy computational cost when trained with large datasets, an active learning (AL) strategy was explored to try to alleviate this issue. Validation was carried out using ground data from two study sites: one in Shunyi (China) and the other in Maccarese (Italy). In general, the performance of the algorithms was consistent for the two study sites, though a different level of accuracy was found between the two sites, possibly due to slightly different ground sampling protocols and the range and variability of the values of the biophysical variables in the two ground datasets. For LAI estimation, the best ground validation results were obtained for both sites using least squares linear regression (LSLR) and partial least squares regression, with the best performances values of R2 of 0.78, rott mean squared error (RMSE) of 0.68 m2 m−2 and a relative RMSE (RRMSE) of 19.48% obtained in the Maccarese site with LSLR. The best results for LCC were obtained using Random Forest Tree Bagger (RFTB) and Bagging Trees (BagT) with the best performances obtained in Maccarese using RFTB (R2 = 0.26, RMSE = 8.88 μg cm−2, RRMSE = 17.43%). Gaussian Process Regression (GPR) was the best algorithm for all variables only in the cross-validation phase, but not in the ground validation, where it ranked as the best only for FVC in Maccarese (R2 = 0.90, RMSE = 0.08, RRMSE = 9.86%). It was found that the AL strategy was more efficient than the random selection of samples for training the GPR algorithm.

Highlights

  • Accurate quantitative estimation of biophysical variables is of crucial importance for different agricultural and ecological applications

  • Hybrid methods of biophysical variables retrieval rely on the generation of simulated spectra using physically-based radiative transfer models (RTM) for the training of machine learning regression algorithms (MLRAs), under the assumption of a more general applicability as compared to the training carried out using measured data, since RTMs allow to simulate a wider range of leaf and canopy properties

  • It was shown, using the same set of PROSAIL simulations, that some MLRAs could provide better results than neural networks (NNs)-based algorithms implemented in Sentinel Application Platform (SNAP)

Read more

Summary

Introduction

Accurate quantitative estimation of biophysical variables is of crucial importance for different agricultural and ecological applications Such variables include leaf area index (LAI), leaf chlorophyll content (LCC), fraction of absorbed photosynthetically active radiation (FAPAR), fractional vegetation cover (FVC), and canopy chlorophyll content (CCC). The methods based on the relationship of, for example, vegetation indices and biophysical variables by the means of fitting functions, typically use the information provided by two or a few spectral bands. This limits the strength of such methods in today’s scenarios where tens or even hundreds of spectral bands are available, respectively, in current super-spectral [11] or forthcoming hyperspectral [12,13] spaceborne sensors

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.