Abstract

Abstract Construction and optimization methods of spherical hexagonal–pentagonal geodesic grids are investigated. The objective is to compare grid structures on common ground. The distinction between two types of hexagonal–pentagonal grids is made. Three conventional grid optimization methods are summarized. In addition, three new optimization methods are proposed. Six desirable conditions for an ideal grid are described, and the grid optimization methods are organized in view of such conditions. Interval uniformity, area uniformity, isotropy, and bisection of cell faces are systematically investigated for optimized grids. There are compensations of preferable grid features in each optimization method, and an optimal method cannot be decided based only on the research of grid features. It is suggested that grid optimization methods should be selected based on research of numerical schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.