Abstract

Abstract An assessment of the performance of the Geostationary Operational Environmental Satellite (GOES) sounder cloud-top pressure product is presented. GOES sounder cloud-top-height data were compared with values derived from a consensus cloud boundary dataset that utilizes data from a cloud lidar and a cloud radar located at the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program’s Cloud and Radiation Test Bed (CART) site in Lamont, Oklahoma. Comparisons were performed from April 2000 to March 2002. A temporal filtering process was applied to the cloud lidar and cloud radar output so that a representative picture of the cloud field on the same spatial scale of the GOES sounder could be derived. Comparisons between the GOES sounder and ground-based cloud boundary measurements yielded a mean difference of 1772 m and a standard deviation of 1733 m. The difference between GOES cloud-top-height and ground-based retrievals is within ±500 m for 22% of the retrievals and within ±1500 m for 56% of the retrievals. These results are comparable to findings in similar studies that utilized the MODIS Airborne Simulator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.