Abstract

Process-induced damage of gate oxide or of the Si-SiO/sub 2/ interface may result in device degradation problems such as threshold voltage scatter. The problem is especially pronounced for submicrometer technology. In addition to offering a low area defect density, a thermal/CVD stacked gate oxide decreases process-induced device degradation dramatically as compared with thermal gate oxide. Hot carrier injection stressing and Fowler-Nordheim stressing were performed to investigate the robustness of CVD stacked gate oxide. The effect of densification of the stacked gate oxide on electrical channel length was studied with supporting SEM analysis. An optimal value for the thickness ratio of CVD to thermal oxide for stacked gate dielectric was observed for minimum defect density of 150-AA gate dielectric.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.