Abstract

Stereo (biplane) fluoroscopic imaging systems are considered the most accurate and precise systems to study joint kinematics in vivo. Calibration of a biplane fluoroscopy system consists of three steps: (1) correction for spatial image distortion; (2) calculation of the focus position; and (3) calculation of the relative position and orientation of the two fluoroscopy systems with respect to each other. In this study we compared 6 methods for calibrating a biplane fluoroscopy system including a new method using a novel nested-optimization technique. To quantify bias and precision, an electronic digital caliper instrumented with two tantalum markers on radiolucent posts was imaged in three configurations, and for each configuration placed in ten static poses distributed throughout the viewing volume. Bias and precision were calculated as the mean and standard deviation of the displacement of the markers measured between the three caliper configurations.The data demonstrated that it is essential to correct for image distortion when sub-millimeter accuracy is required. We recommend calibrating a stereo fluoroscopic imaging system using an accurately machined plate and a calibration cube, which improved accuracy 2–3 times compared to the other calibration methods. Once image distortion is properly corrected, the focus position should be determined using the Direct Linear Transformation (DLT) method for its increased speed and equivalent accuracy compared to the novel nested-optimization method. The DLT method also automatically provides the 3D fluoroscopy configuration. Using the recommended calibration methodology, bias and precision of 0.09 and 0.05mm or better can be expected for measuring inter-marker distances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.