Abstract

AbstractIn this paper we consider various preconditioners for the conjugate gradient (CG) method to solve large linear systems of equations with symmetric positive definite system matrix. We continue the comparison between abstract versions of the deflation, balancing and additive coarse grid correction preconditioning techniques started in (SIAM J. Numer. Anal. 2004; 42:1631–1647; SIAM J. Sci. Comput. 2006; 27:1742–1759). There the deflation method is compared with the abstract additive coarse grid correction preconditioner and the abstract balancing preconditioner. Here, we close the triangle between these three methods. First of all, we show that a theoretical comparison of the condition numbers of the abstract additive coarse grid correction and the condition number of the system preconditioned by the abstract balancing preconditioner is not possible. We present a counter example, for which the condition number of the abstract additive coarse grid correction preconditioned system is below the condition number of the system preconditioned with the abstract balancing preconditioner. However, if the CG method is preconditioned by the abstract balancing preconditioner and is started with a special starting vector, the asymptotic convergence behavior of the CG method can be described by the so‐called effective condition number with respect to the starting vector. We prove that this effective condition number of the system preconditioned by the abstract balancing preconditioner is less than or equal to the condition number of the system preconditioned by the abstract additive coarse grid correction method. We also provide a short proof of the relationship between the effective condition number and the convergence of CG. Moreover, we compare the A‐norm of the errors of the iterates given by the different preconditioners and establish the orthogonal invariants of all three types of preconditioners. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.