Abstract
In this work, the performance of an accelerator-based neutron source design has been compared with that of a modern fluoride-filtered reactor-based epithermal beam having near-optimal quality for treatment of deep seated tumors in relation to its applicability for BNCT. The accelerator is a Tandem-Electrostatic-Quadrupole (TESQ) accelerator which is a design under development at the National Atomic Energy Commission (CNEA) in Buenos Aires, Argentina based on the 7Li(p,n)7Be reaction, relatively close to its energy threshold. The reactor is the Massachusetts Institute of Technology reactor upgraded with a Fission Converter Beam (MIT-FCB) and improved with an 8mm thick 6Li filter. The comparison has been done by means of data reported on the MIT-FCB+6Li filter performance and MCNP simulations on our TESQ design considering the neutron fluxes provided by the two sources and the doses delivered in a human phantom by both devices. The results show a deeper advantage depth (AD) for the TESQ which turns out to be a promising alternative to a reactor-based BNCT treatment.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have