Abstract
Symmetric and non-symmetric Galerkin formulations are presented for the coupling of a finite element modelled interior region to a boundary integral supported exterior region for the two-dimensional steady state exterior Stokes problem. Both single and double-layer hydrodynamic potentials are used allowing a well conditioned symmetric matrix structure for the entire interior–exterior, velocity–pressure system when the exterior velocity boundary integral equation (VBIE) is augmented by a traction boundary integral equation (TBIE) with the pressure determined everywhere purely through the imposition of the divergence-free velocity condition. Corresponding non-symmetric formulations are obtained by additionally discretizing an associated pressure boundary integral equation (PBIE), where the associated kernel functions have singularities an order higher than in the VBIE, with a simple regularization of the new hyper-singular pressure kernel. Comparable solution convergence with mesh refinement for the symmetric and non-symmetric schemes is shown for stabilized and mixed velocity–pressure conforming finite element pairs using Lagrangian shape functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.