Abstract

AbstractIn this work, we implemented and compared two different methods to impose the rigid‐body motion constraint on a solid particle moving inside a fluid. We consider a fictitious domain method to easily manage the particle motion. As the solid as well as the fluid inertia are neglected, the particle can be discretized through its boundary only. The rigid‐body motion is imposed via Lagrange multipliers on the boundary. In the first method, such constraints are imposed in discrete points on the boundary (collocation), whereas in the second the constraint is imposed in a weak way on elements dividing the particle surface.Two test problems, that is, a spherical and an ellipsoidal particle in a sheared Newtonian fluid, are chosen to compare the methods. In both cases, the analysis is carried out in 2D as well as in 3D.The results show that for the collocation method an optimal number of collocation points exist leading to the smallest error. However, small variations in the optimal value can generate large deviations. In the weak implementation, the error is only mildly affected by the number of elements used to discretize the particle boundary and by the Lagrange multiplier's interpolation space. A further analysis is carried out to study the effect of an approximated integration of weak constraints.A comparison between the two methods showed that the same accuracy can be achieved by using less constraints if the weak discretization is used. Finally, the rigid‐body motion imposed via weak constraints leads to better conditioned linear systems. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.