Abstract

A numerical scheme is developed to simulate the motion of dielectric particles in uniform and nonuniform electric fields of a micro fluidic device. The particles are moved using a direct simulation scheme in which the fundamental equations of motion of fluid and solid particles are solved without the use of models. The motion of particles is tracked using a distributed Lagrange multiplier method (DLM) and the electric force acting on the particles is calculated by integrating the Maxwell stress tensor (MST) over the particle surfaces. One of the key features of the DLM method is that the fluid-particle system is treated implicitly by using a combined weak formulation where the forces and moments between the particles and fluid cancel, as they are internal to the combined system. The MST is obtained from the electric potential, which, in turn, is obtained by solving the electrostatic problem. In our numerical scheme the Marchuk-Yanenko operator-splitting technique is used to decouple the difficulties associated with the incompressibility constraint, the nonlinear convection term, the rigid-body motion constraint and the electric force term. A comparison of the DNS results with those from the point-dipole approximation shows that the accuracy of the latter diminishes when the distance between the particles becomes comparable to the particle diameter; the domain size is comparable to the diameter; and also when the dielectric mismatch between the fluid and particles is relatively large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call