Abstract

Abstract Using a 3-km regional ensemble prediction system (EPS), this study tested a three-dimensional (3D) rescaling mask for initial condition (IC) perturbation. Whether the 3D mask-based EPS improves ensemble forecasts over current two-dimensional (2D) mask-based EPS has been evaluated in three aspects: ensemble mean, spread, and probability. The forecasts of wind, temperature, geopotential height, sea level pressure, and precipitation were examined for a summer month (1–28 July 2018) and a winter month (1–27 February 2019) over a region in North China. The EPS was run twice per day (initiated at 0000 and 1200 UTC) to 36 h in forecast length, providing 56 warm-season forecast cases and 54 cold-season cases for verification. The warm and cold seasons are verified separately for comparison. The study found the following: 1) The vertical profile of IC perturbation becomes closer to that of analysis uncertainty with the 3D rescaling mask. 2) Ensemble performance is significantly improved in all three aspects. The biggest improvement is in the ensemble spread, followed by the probabilistic forecast, and the least improvement is in the ensemble mean forecast. Larger improvements are seen in the warm season than in the cold season. 3) More improvement is in the shorter time range (<24 h) than in the longer range. 4) Surface and lower-level variables are improved more than upper-level ones. 5) The underlying mechanism for the improvement has been investigated. Convective instability is found to be responsible for the spread increment and, thus, overall ensemble forecast improvement. Therefore, using a 3D rescaling mask is recommended for an EPS to increase its utility especially for shorter time range and surface weather elements. Significant Statement A weather prediction model is a complex system that consists of nonlinear differential equations. Small errors in either its inputs or model itself will grow with time during model integration, which will contaminate a forecast. To quantify such contamination (“uncertainty”) of a forecast, the ensemble forecasting technique is used. An ensemble of forecasts is a multiple of model runs at the same time but with slightly “perturbed” inputs or model versions. These small perturbations are supposed to represent true “uncertainty” in inputs or model representation. This study proposed a technique that makes a perturbation’s vertical structure more resemble real uncertainty (intrinsic error) in input data and confirmed that it can significantly improve ensemble forecast quality especially for a shorter time range and lower-level weather elements. It is found that convective instability is responsible for the improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.