Abstract
The geometrical structures, electrical properties, and nonlinear optical (NLO) properties of AlNNT-Li and BNNT-Li nanotube systems were investigated by means of the density functional theory (DFT) method. Frontier molecular orbitals and density of states analyses show that adsorption of the Li atom can significantly narrow the wide HOMO-LUMO gaps of pure AlNNT and BNNT. The results reveal that AlNNT-Li and BNNT-Li systems containing diffuse excess electrons can be regarded as inorganic electrides. The formation of diffuse excess electrons leads to a decrease in transition energies, thereby increasing the first hyperpolarizabilities (β 0) of AlNNT-Li and BNNT-Li. This work may contribute to the development of potential high-performance NLO materials. Graphical abstract The structural characteristics and nonlinear optical properties of the AlNNT-Li and BNNT-Li systems were studied by means of density functional theory. Introduction of Li atoms greatly enhances the static first hyperpolarizabilities of AlNNT-Li and BNNT-Li.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.