Abstract

The radiochemical separation of 88Y from proton irradiated natSrCO3 and alpha-particle irradiated natRbCl, of 86Y from proton irradiated 86SrCO3, and of 87Y from alpha-particle irradiated natRbCl were studied at no-carrier-added levels by two techniques, namely, ion-exchange chromatography using Dowex 50W-X8 and Dowex 21K resins, and solvent extraction using HDEHP. Out of all those methods, the ion-exchange chromatography using Dowex 50W-X8 (cation-exchanger) was found to be the best: the separation yield was high, the chemical impurity in the separated radioyttrium (inactive Sr or Rb) was low (0.5 μg) and the final product was obtained in the form of citrate. The optimized separation method using Dowex 50W-X8 was applied in practical production of 86Y and 88Y via proton irradiations of 86SrCO3 and natSrCO3, respectively, at 16 MeV as well as of 87Y and 88Y via α-particle irradiation of natRbCl at 26 MeV. The tangible experimental yields of 86Y and 87Y amounted to 150 and 5.7 MBq/μA·h, respectively. The yields of 88Y obtained were 0.06 MBq/μA·h and 1 MBq/μA·h for alpha-particle and proton irradiations, respectively. Each yield value corresponds to more than 70% of the respective theoretical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.