Abstract

The two isoelectronic bipyridyl derivatives, [2,2'-bipyridyl]-3,3'-diamine and [2,2'-bipyridyl]-3,3'-diol, are experimentally known to undergo very different excited-state double-proton-transfer processes, which result in fluorescence quantum yields that differ by four orders of magnitude. Herein, density functional theory (DFT), time-dependent DFT (TDDFT), and complete active space self-consistent field (CASSCF) calculations are used to study the double-proton-transfer processes in the ground and first singlet pi-->pi* excited state. The quantum-chemistry calculations indicate 1) the existence of only one energy minimum in the ground electronic state corresponding to reactants (thus avoiding the possibility of a fast fluorescent relaxation process from the photoproducts region), 2) an endoergic process of the complete double proton transfer, and 3) the presence of a conical intersection in the excited intermediate region of [2,2'-bipyridyl]-3,3'-diamine. These facts explain the very low fluorescence quantum yield in [2,2'-bipyridyl]-3,3'-diamine compared to [2,2'-bipyridyl]-3,3'-diol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call