Abstract
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin > epimedin B > epimedin A > epimedin C > baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin > epimedin A > epimedin C > epimedin B > baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What’s more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora.
Highlights
Yinyanghuo (Herba Epimdii, YYH) is a popular Traditional Chinese Medicine tonic for kidney-reinforcing, used to invigorate the kidney-yang, strengthen the sinews and bones, dispel wind and eliminate dampness in clinical practice in East Asian countries for thousands of years [1,2,3].Flavonoids as the phytoestrogens in medicinal plants have long been considered to exert beneficial effects on estrogen-related diseases by acting as selective estrogen receptor modulators
We investigated in detail the metabolism of icariin, epimedin A, epimedin B, epimedin C, baohuoside I by rat intestinal enzyme and intestinal flora in vitro
Five prenylated flavonoids were incubated with rat intestinal enzyme and intestinal flora solution and the degradation products were analyzed with time by HPLC-UV and LC/LC/MS
Summary
Yinyanghuo (Herba Epimdii, YYH) is a popular Traditional Chinese Medicine tonic for kidney-reinforcing, used to invigorate the kidney-yang, strengthen the sinews and bones, dispel wind and eliminate dampness in clinical practice in East Asian countries for thousands of years [1,2,3].Flavonoids as the phytoestrogens in medicinal plants have long been considered to exert beneficial effects on estrogen-related diseases by acting as selective estrogen receptor modulators. In plasma, bile, urine, and feces, it is generally believed that intestinal flora absolutely plays a main role in the metabolism of YYH flavonoids because the intestinal microflora comprises a complex ecosystem of a large variety of bacteria which can produce negative and positive effects on metabolism, but preliminary research in our laboratory has indicated that prenylated flavonoids might be hydrolyzed both by intestinal flora and intestinal enzymes, especially lactase phlorizin hydrolase (LPH). In this experiment, we sought to explore whether the enzyme can affect the hydrolysis of prenylated flavonoids in YYH or not and investigate the effects of intestinal enzyme hydrolysis on the prenylated flavonoids in YYH
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.